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Idiopathic inflammatory myopathies (IIMs), collec-
tively termed myositis, include three major sub-
groups: polymyositis, dermatomyositis and inclu-
sion body myositis. IIMs are characterized clinically
by muscle weakness and reduced muscle endur-
ance preferentially affecting the proximal skeletal
muscle. In typical cases, inflammatory cell infil-
trates and proinflammatory cytokines, alarmins
and eicosanoids are present in muscle tissue.
Treatment with glucocorticoids and other immuno-
suppressants results in improved performance,
but complete recovery is rarely seen. The mecha-
nisms that cause muscle weakness and reduced
muscle endurance are multi-factorial, and different
mechanisms predominate in different phases of
disease. It is likely that a combination of immune-
mediated and nonimmune-mediated mechanisms
contributes to clinical muscle symptoms. Immune-

mediated mechanisms include immune cell-medi-
ated muscle fibre necrosis as well as direct effects
of various cytokines on muscle fibre contractility.
Among the nonimmune-mediated mechanisms, an
acquired metabolic myopathy and so-called endo-
plasmic reticulum stress may be important. There
is also a possibility of defective repair mechanisms,
with an influence of both disease-related factors
and glucocorticoid treatment. Several proinflamma-
tory molecules observed in muscle tissue of myosi-
tis patients, including interleukin (IL)-1, IL-15, tu-
mour necrosis factor, high-mobility group box-1
and eicosanoids, have a role in muscle fibre regen-
eration, and blocking these molecule may impair
muscle repair and recovery. The delicate balance
between immunosuppressive treatment to downre-
gulate proinflammatory molecules and an inhibi-
tory effect on muscle fibre regeneration needs to be
further understood. This would also be relevant for
other chronic inflammatory diseases.

Keywords: cytokines, eicosanoids, inflammation, infla-
mmatorymyopathies,myositis, pathogenesis, physi-
cal exercise, regeneration.

Background

Idiopathic inflammatory myopathies (IIMs), collec-
tively known as myositis, are characterized clini-
cally by muscle weakness and a low level of muscle
endurance preferentially affecting the proximal
skeletal muscle. Initial symptoms include difficulty
in climbing stairs and rising from a chair. Muscle
weakness may develop over weeks to months into
severe weakness, and occasionally, patients may
become wheelchair dependent. Difficulty in swal-
lowing or breathing may also occur owing to
involvement of the pharyngeal or thoracic muscles.
Pain is a less common problem and is usually
reported as delayed onset muscle soreness after
exercise. A typical finding from muscle biopsies is
inflammatory cell infiltrates composed mainly of T

cells, macrophages and dendritic cells [1, 2]. Based
on various clinical and histopathological pheno-
types, three major subgroups of IIMs have been
identified: polymyositis, dermatomyositis and inclu-
sion body myositis (IBM) (Tables 1 and 2) (Fig. 1a–c)
[3]. Other organs are frequently involved, such as
skin in dermatomyositis and lung in both polymyo-
sitis and dermatomyositis. Less often, the joints,
heart and gastrointestinal tract are affected. Au-
toantibodies are commonly found in IIMs, and posi-
tive antinuclear autoantibodies are found in up to
80% of cases of polymyositis and dermatomyositis
but less frequently in IBM (20%) (Table 1) [4]. Treat-
ment is based on glucocorticoids in high doses over
weeks to months, often in combination with other
immunosuppressants such as azathioprine or
methotrexate [5].
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Themolecularmechanisms that causemuscleweak-
ness and reducedmuscle endurance in patients with
myositis have not been fully clarified. These mecha-
nisms may vary between patients and in different
phases of the disease. It has been suggested that the
cause ofmuscleweakness is loss ofmuscle fibres be-
causeoffibredegeneration andnecrosis as a result of
direct cytotoxic effects of T cells [6]. However, there is
a dissociation between the degree of histopathologi-
cal changes and the degree of muscle weakness,
which suggests that othermechanismsmayalso lead
to low muscle performance. One possibility is an
effect of cytokines, released from the infiltrating
inflammatory cells, on muscle contractile properties
including effects on Ca2+ release from the sarcoplas-
mic reticulum as has been demonstrated for tumour
necrosis factor (TNF) and more recently also for the

alarmin high-mobility group box (HMGB)1 [7, 8].
Both TNF and HMGB1 have been detected inmuscle
tissue of myositis patients (Table 3) [9]. Another
mechanism that may contribute to the low muscle
performance is loss of capillaries in muscle tissue
and, as a consequence, tissue hypoxia which could
have a negative effect on muscle performance [10,
11]. There are also signs of nonimmunemechanisms
in muscle tissue of myositis patients, including
endoplasmic reticulum (ER) stress, that could affect
muscleperformance [12].

Most patients have a partial clinical improvement
with immunosuppressive treatment, but few recover
their formermuscle performance. The reason for this
is unclear, butmay be owing to persistent inflamma-
tion or merely inflammatory molecules that have a

Table 1 Presentationof clinical symptomsandautoantibodies insubsetsofmyositis

Clinical symptoms Polymyositis Dermatomyositis Inclusionbodymyositis (IBM)

Proximalmuscleweakness ++ ++ ++ (quadriceps)

Distalmuscleweakness + + ++ (fingerflexors)

Lowmuscleendurance ++ ++ +

Skinrash + (mechanic’shands) ++(heliotroperash,

Gottron’spapulesorsign)

)

Interstitial lungdisease (ILD) + + )

Nonerosivearthritis + + )

Heart involvement (myocarditis) + + )

Autoantibodies 80% 80% 20%

++:pronouncedsymptomspresent inmanypatients.
+:present lessoftenormildsymptoms.

Table 2 Musclebiopsycharacteristics insubsetsofmyositis

Musclebiopsy feature Polymyositis Dermatomyositis Inclusionbodymyositis (IBM)

Inflammatorycell infiltrateswithpreferentially

endomysialdistribution

++ + ++

Inflammatorycell infiltrateswithpreferentially

aperimysialdistribution

+ ++ +

CD8+Tcells in infiltrates ++ ) ++

CD4+Tcells in infiltrates ++ ++ ++

Macrophages ++ ++ ++

Bcells ) + )

Plasmacytoiddendritic cells (pDCs) + ++ +

Majorhistocompatibilitycomplex (MHC)class I

expressiononmusclefibres

+ + +

Capillary loss + ++ ?

Perifascicular ‘atrophy’ofmusclefibres + ++ ?
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negative effect onmuscle contractility, or apersistent
atrophy because of disuse or defectivemuscle regen-
eration. Another explanationcouldbe replacement of
muscle tissue by fat which is often seen in patients
with IBM, regardless of immunosuppressive treat-
ment. Possible molecular mechanisms that could
contributeto thepersistentchronicmuscleweakness
in polymyositis and dermatomyositis will be further
discussedbelow.

Muscle weakness in myositis

Loss of muscle fibres owing to myocytotoxic effect of immune cells

The most often advocated mechanism of muscle
weakness inmyositis is an immune-mediated loss of
muscle fibres through a myocytotoxic effect of infil-
trating inflammatory cells [6]. Muscle tissue in poly-
myositis, dermatomyositis and IBM is typically char-
acterized by infiltration of inflammatory cells; in
particular, of T cells, macrophages, dendritic cells
and occasionally B cells [2, 13]. The T-cell infiltrates
are composed of CD4+ and CD8+ T cells [2]. A direct
cytotoxic effect throughan interactionbetweenCD8+
T cells andmajor histocompatiblility complex (MHC)
class I onmuscle fibers has been suggested as a me-
chanismformusclefiberdamage inpolymyositis and
inclusionbodymyositis. However, the costimulatory
molecules required for the T cell-mediated cytotoxic
effects have not been convincingly demonstrated in
muscle tissue of myositis patients. In the light of
this, the recently demonstrated high prevalence of
CD28null T cells inmuscle tissue of myositis patients
is of particular interest as these T cells have a pheno-
type that resembles natural killer (NK) cells and can
exert a cytotoxic effect without CD28 and its ligands
[14]. It is also interesting that the NK cell properties
are observed for both CD4+ and CD8+ CD28null T
cells. Therefore, T cell-mediatedmyocytotoxicity and
loss of muscle fibres could be induced by both CD4+

and CD8+ CD28null T cells (Fig. 2), but whether
CD28null T cells really have a myocytotoic effect re-
mains tobedetermined.

Cytokine-mediated muscle weakness

The presence of several cytokines and chemokines
has been reported in muscle tissue of myositis pa-
tients. Cytokines have pleiotropic effects and may
have pro- or anti-inflammatory properties and there-
by serve as targets for therapy. Several different
cytokineshaveeffects onmuscle fibres, bothonmus-
cle fibre contractility and remodelling; these effects
will be the focus of the discussion in this review. The

(a)

(b)

(c)

Fig. 1 (a–c) Characteristics of healthymuscle and ofmuscle
from patients with polymyositis and dermatomyositis. (a)
Cross-sectional muscle biopsy tissue from a healthy subject
(haematoxylinandeosinstaining). Image courtesyofDrCeci-
lia Grundtman. (b) Cross-sectional muscle biopsy sample
from a patient with polymyositis; image shows fibre size
variation, several fibres with central nuclei, mononuclear
inflammatory cells with an endomysial distribution and sur-
rounding muscle fibres (haematoxylin and eosin staining),
degenerating fibres (thick arrows) and regenerating fibres
(broken arrows). Image courtesy of Dr Inger Nennesmo. (c)
Cross-sectional muscle biopsy sample from a patient with
dermatomyositis; image shows a perimysial and perivascu-
lar inflammatory cell infiltrate and perifascicular distribution
of small fibres (arrows) so-called perifascicular muscle
atrophy). Often, these smaller fibres are regenerating fibres.
ImagecourtesyofDr IngerNennesmo.
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cellular source of cytokines in muscle tissue may be
infiltrating inflammatory cells or other cellular
sourcessuchasendothelial cellsormusclefibres (Ta-
ble 3) (Fig. 2). Chemokines have a role in attracting
cells into the tissue of inflammation, in this case into
muscle tissue, and are also possible targets of ther-
apy, although their role in disease mechanisms of
myositis has not been well documented and will not
be furtherdiscussed inthis review.

Tumour necrosis factor has a central role in several
chronic inflammatory diseases including rheuma-
toid arthritis and Crohn’s disease [15]. It is also clear
thatTNFhascataboliceffectsonmuscle in inflamma-
tory conditions [16]. TNF issecretedbymacrophages,
monocytes, T cells, NK cells and neutrophils [17] and
canbe releasedbydamagedmuscle fibresuponskel-
etal muscle injury (Fig. 2) in inflammatory myopa-
thies and Duchenne muscular dystrophy [18]. TNF
has several roles in inflammation including activa-
tion and chemotaxis of leucocytes, expression of
adhesionmolecules and regulation of the secretion of
otherproinflammatorycytokines [17].

Tumour necrosis factor appears to be important
throughout the degenerative phase of postinjury
muscle regeneration by several mechanisms [19,
20]. TNF expression is upregulated in injured mus-
cle fibres during the repair process and returns to
normal during the first days postinjury. [18]. TNF
acts via promoting the activation of nuclear factor
kappa-light-chain-enhancer of activated B cells
(NFjB) which causes proteolysis and can also pro-
mote the expression of atrogin-1, leading to muscle
protein catabolism [19, 20]. TNF expression in dam-
aged muscle fibres does not correlate with the level
of inflammatory infiltrates in muscle tissue [21]
thus suggesting that TNF in muscle fibres may have
other functions besides the conventional proinflam-
matory properties. In primary myoblasts, it has
been shown that TNF is able to activate quiescent
satellite cells as well as enhance cell proliferation
and promote differentiation (Fig. 2) [22]. This sug-
gests that TNF has both degenerative and regenera-
tive capacities within skeletal muscle. In addition,
TNF has a direct negative effect on muscle fibre con-
tractility through an inhibitory effect on Ca2+ release

Table 3 Molecular elements (cytokines, chemokines and lipid mediators) of the immune response detected in muscle tissue of

myositispatients

Cytokines Origin

TNF Scatteredmononuclearcells,macrophagecytoplasm,degenerating

andregeneratingmusclefibrenuclei, endomysial andperimysial connective tissue

IFN-a Plasmacytoiddendriticcells

IFN-c Tcells

IL-1 Inflammatorycells, endothelial cells, capillaries

IL-6 Sparseexpression inscattered inflammatorycells

IL-15 Mononuclear inflammatorycells,predominantlymacrophages

IL-18 Endomysialandperimysialmacrophagesanddendriticcells

HMGB-1 Macrophages,endothelial cells,musclefibres

Chemokines

CXCL9 Mononuclear inflammatorycells, somemyofibres

CXCL10 Tcellsandmacrophages

CCL2 Bloodvessels,Tcells

CCL3 Mononuclear inflammatorycells,myofibres

CCL19 Myofibres

Lipidmediators

mPGES-1 (PGE2) Macrophages

5-LO(LTB4) Macrophages

TNF, tumour necrosis factor; IFN, interferon; IL, interleukin; HMGB-1, high-mobility group box-1; CXCL, a-chemokine induc-
ible by IFN-c; CCL, b-chemokine effecting leucocyte activation and trafficking with role in tissue repair and skeletal muscle
regeneration;mPGES-1,microsomalprostaglandinEsynthase1;5-LO,5 lipoxygenase;LTB4, leukotrieneB4.
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from the sarcoplasmic reticulum thus causing mus-
cle fatigue [7].

Within muscle tissue from patients with myositis,
TNF is mainly expressed by scattered mononuclear
cells [23]. However, the role of TNF in the pathogene-
sis of myositis is still unclear, as treatment with TNF
blockade has led to conflicting results and even
causedworseningof inflammation [24].

Interleukin-1a and -1b are among the most consis-
tently expressed cytokines inmuscle tissue ofmyosi-
tispatients,andIL-1receptorsareexpressedonmus-
cle fibres (Table 3) [25]. IL-1 may induce TNF, and
both IL-1b andTNFmay inhibit expressionandactiv-
ity of growth hormone and insulin-like growth factor
1 in muscle fibres (Fig. 2). In an open study using
treatment with IL-1 blockade (anakinra), seven of 15
patients showed improvements in a number of clini-
calparameters includingmuscleperformance,which
might indicate a role of IL-1 inmuscleperformance in
myositis (unpublisheddata).

Interleukin-6 is a pleiotropic cytokine that regulates
immune response, inflammation and haematopoie-
sis. IL-6 is produced by macrophages, fibroblasts,
endothelial cells andT cells and is rapidly inducedby
multiple stimuli such as viral infection, lipopolysac-
charide andother cytokines [26]. There are a number
of autoimmune and inflammatory diseases in which
IL-6 is pathologically overproduced, and blockade of
thiscytokinesignallingpathway isapprovedfor treat-
ment of rheumatoid arthritis [27]. However, data
have shown that IL-6mayalso exert inhibitory effects
on TNF and IL-1 production (Fig. 2) [28]. Stimulation
of IL-1 receptor antagonist (IL-1ra) and IL-10hasalso
been suggested as one of the anti-inflammatory ef-
fectsof IL-6 [29].

Interleukin-6 also has a dual effect on skeletal
muscle. Overexpression of IL-6 leads to skeletal
muscle atrophy in mice accompanied by an in-
creased expression of ubiquitins and cathepsins,
which was blocked by treatment with a muscle
IL-6 receptor antibody [30]. Local infusion of IL-6

DendriƟc cellsT cellsMuscle cells
CD68+ CD163+CD4+/CD8+

Endothelial cellsNeutrophils Macrophages

IL-6, IL-15,

Cytotoxic

TNF, HMGB1
PGs, LTB4

IFN
LTB4 IFN

IL-1α, IL-6
IL-15?
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Fig. 2 A schematic diagram illustrating the positive effects onmuscle fibre regenerationand remodelling ofmolecules thatmight
haveadual role inmuscle tissuebothpromoting inflammationandaffectingskeletalmusclefibre regenerationand remodelling in
myositis patients. The key molecules can influence each other (red arrows) as well as the different phases of skeletal muscle
regeneration; the focus in thisdiagram ison the less frequentlydescribedpositiveeffects (bluearrows) rather thantheestablished
negativeeffects.Thebrokenbluearrowindicates inhibitingeffectsonmusclefibredifferentiation.Uponskeletalmusclefibredam-
age, an inflammatory ⁄ immune responseprecedesmyogenesis. The local immune response inmuscle tissuehasadirect effect on
satellite cell activation,proliferation,differentiationor fusion.This local immuneresponsemightbe disturbed (e.g. by immunosup-
pressive treatment), thus potentially influencing the functional restoration of fibres injured in variousways. Therefore, suppress-
ing the immunesystemorblockingsingle cytokinesor receptorsmightdisturbskeletalmuscle regeneration.SC,satellite cells.
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decreased myofibrillar protein without entering the
blood stream or the neighbouring muscle [31]. In
humans, IL-6 has in recent years been identified
as a ‘myokine’, a cytokine produced and secreted
by skeletal muscle, and it has been demonstrated
that plasma concentrations of IL-6 as well as IL-6
mRNA and protein expression in muscle tissue are
elevated during physical exercise. These increased
levels are related to exercise duration and inten-
sity, the muscle mass involved as well as endur-
ance capacity [32]. Exercise has also been found to
increase the production of IL-6 receptors in human
muscle thus suggesting a postexercise sensitizing
mechanism [33].

The exact role of IL-6 in skeletal muscle in relation
to exercise is still unclear, but recent work has
identified this cytokine as an essential regulator
of satellite cell-mediated overload-induced muscle
hypertrophy suggesting a role in muscle remodel-
ling [34]. In an experimental approach, IL-6) ⁄ ) mice
showed hypertrophy during overload but accompa-
nied by a large increase in noncontractile tissue,
implying that IL-6 is a critical factor in the regula-
tion of the fibrotic response of skeletal muscle dur-
ing overload-induced hypertrophy [35]. Blocking
the effect of IL-6 produces unwanted effects on met-
abolic homeostasis such as an increase in whole
body weight, total cholesterol and glucose intoler-
ance, which might point towards a negative role in
skeletal muscle [36].

In patients with dermatomyositis, elevated serum
levels of IL-6 correlated with disease activity [37];
however, only low levels of IL-6 gene expression were
detected inmuscle tissue frommyositispatients, and
IL-6protein expressionwasonlyobserved inaminor-
ity of the inflammatory cells in a fraction of patients
(Table 3) [23]. Therefore, the role of IL-6 in the devel-
opment of muscle weakness in myositis is unclear,
and a potential negative effect onmusclemetabolism
and muscle fibre regeneration should be taken into
account if treatment with IL-6 blockade is consid-
ered.

Interleukin-15 is another cytokine that has effects
bothonthe immunesystemandonskeletalmusclefi-
bres and that may have a role in the pathogenesis of
myositis. This cytokine with proinflammatory prop-
erties is expressed in macrophages and endothelial
cells inducing chemotaxis and proliferation of T cells
(Table 3). IL-15 may also contribute to an increased
production of other proinflammatory cytokines such
as TNF, interferon (IFN)-c and IL-17 in T cells [38]. In

polymyositis and dermatomyositis, IL-15 and its
receptor IL-15Ra have been observed in muscle tis-
sue, and, of interest, IL-15 was still expressed after
more than 6 months of immunosuppressive treat-
ment in patients with persistent muscle weakness
[39] (ZongM,unpublisheddata).

Withinskeletalmusclefibres, IL-15canstimulatedif-
ferentiated myocytes and muscle fibres to accumu-
late contractile proteins, and IL-15 can induce an
accumulationofmyosinheavychainprotein indiffer-
entiated myotubes in culture (Fig. 2) [40]. Another
mechanism involved in the anabolic effects of IL-15
on skeletalmuscle is a decrease in the rate of proteol-
ysis [41], which is independent of changes in the lev-
els of hormones such as insulin or glucocorticoids
[42]. IL-15 mRNA expression in skeletal muscle has
been shown to dominate in type II (glycolytic) muscle
fibres [43]. IL-15 is also important in angiogenesis
which might be the main reason for the changes in
plasma levels of this cytokine after acute exercise
[44]. The roleof IL-15 in inflammationandthecontra-
dictory role in preventing muscle wasting raise the
question of what therapeutic approach to take with
IL-15overexpression.

High-mobility group box 1 is a highly conserved,
ubiquitously expressed nonhistone DNA-binding
protein that upon secretion serves as an alarmin,
activating the immune system, but also causesmus-
cle regeneration and repair. HMGB1 can be translo-
cated from the nucleus of necrotic cells, but can also
be actively released by monocytes and macrophages
[45]. Extracellular expressionofHMGB1hasbeenre-
ported inmuscle tissue of patients with polymyositis
or dermatomyositis as well as extranuclear expres-
sion in infiltrating mononuclear cells, endothelial
cells and skeletal muscle (Table 3) [46]. After treat-
mentwithhighdosesof glucocorticoids formore than
3 months, the total HMGB1 protein expression was
downregulated, but cytoplasmic expression re-
mained abnormal in muscle fibres and endothelial
cells in patients with persistent muscle weakness
suggesting a potential role in chronic weakness in
myositis patients. HMGB1 has the potential to
upregulate MHC class I expression (Fig. 2) in muscle
fibres; this upregulation is not normally seen and
is believed to be involved in IIM pathogenesis. In
physiological experiments, HMGB1 exposure irre-
versibly impaired Ca2+ release during repeated
tetanic stimulation [8], which is accompanied by a
reduced force production; thus, HMGB1 might
contribute to the muscle fatigue that characterizes
myositis.
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Results of recent studies have demonstrated that
HMGB1canmodulate stemcell function and thereby
tissue regeneration. HMGB1 has skeletal muscle
regenerative capability as evidenced by enhanced
myoblast recruitment to the site of injury and in-
creased numbers of regenerating fibres as well as
blood vessel formation in amousemodel of hindlimb
ischaemia (Fig. 2) [47]. Another potential regenera-
tionmechanism of HMGB1was shown by promotion
of differentiation of myogenic cells in a rat cell line
[48, 49]. HMGB1 may therefore have both negative
and positive effects onmuscle fibres inmyositis. It is
a potential target for new therapies, but its effects on
muscleperformancestill needtobeclarified.

Eicosanoids in myositis

Eicosanoids are signalling molecules generated by
oxidation of 20-carbon fatty acids that exert complex
control over many systems and processes including
inflammationand immunity. There are different fam-
ilies of eicosanoids, but only prostaglandins (PGs)
and leukotrieneswillbediscussedhere.

Prostaglandins are a group of lipidmediators formed
in response to various stimuli. They include PGD2,
PGE2,PGF2aandPGI2 (prostacyclin) andare released
outside cells immediately after synthesis via cycloox-
ygenase (COX) enzymes and terminal synthases.
Theyexert theiractionsbybinding to receptorsonthe
target cells. PGswere initially considered to be proin-
flammatory, as they could reproduce the cardinal
signs of inflammation; however, it is now clear that
theyalsopossessanti-inflammatoryactivity [50].

Human skeletal muscles have a considerable capac-
ity to produce PGE2, PGD2, PGF2a and PGI2 [51].
During muscle regeneration, myofibres as well as
infiltrating leucocytes secrete PGs that may influ-
ence myogenesis (Fig. 2) [52]. PGE2 appears to be in-
volved in a number of biological processes, including
protein turnover and myogenesis, and is a potent
mediator of muscular pain and inflammation [53–
57]. IL-1b and TNF, which are highly expressed in
myositis muscle tissue, stimulate PGE2 production
in skeletalmuscles [9, 58–60]. Thisproductionmight
be the result of the enhanced expression of the termi-
nal synthase microsomal PGE synthase-1 (mPGES-
1) inmuscle tissue of patients withmyositis (Table 3)
(Fig. 3). Moreover, this expression was not affected
by conventional immunosuppressive treatment.
PGF2a is produced by myoblasts and can prevent
apoptosis as well as promote cell fusion (Fig. 2) [55].
Similarly, in mice, PGI2 signalling controls myoblast

motility and enhances cell fusion [61], but whether
PGF2a and PGI2 are produced in muscle of myositis
patients is not known. In mice, muscle injury in-
duces secretionof PGE2, PGI2 andPGF2abyactivated
myoblasts [62]. Simultaneously, invading leucocytes
are capable of producing PGE2, yet little is known
about the effect on myogenesis of PGs released from
leucocytes.

Leukotrienes are lipid mediators derived from mem-
brane-released arachidonic acid. LTB4 is a powerful
chemoattractant to direct myeloid leucocytes and
activated T cells into inflamed tissue (Table 3) [63].
LTB4 also shows involvement in the differentiation of
naı̈ve T cells [64] as well as the ability to augment the
cytokine production by activated T cells [65]. LTB4 is
formedby the5-lipoxygenase (5-LO)pathwayandex-
erts its actions mainly through the inducible, high-
affinity leukotriene B4 receptor (BLT1) that is ex-
pressed on neutrophils, eosinophils, macrophages
and, to a lesser extent, on T lymphocytes [66–70].
BLT1 expression has been demonstrated in human
endothelial cells and smooth muscle cells [71]. In
addition, LTB4 contributes tomuscle regenerationby
promotingproliferationanddifferentiationof satellite
cells (Fig. 2) and differentiation of rat myoblasts
through BLT1 receptors [64]. LTB4 production by
human skeletal muscle has been determined by
microdialysis and is upregulated in patients with
fibromyalgia [56, 72]. In addition, enhanced
expression of 5-LOmRNA has been demonstrated in
muscle tissue from patients with polymyositis and

Fig. 3 Infiltrating inflammatory cells in muscle tissue of an
untreated patient with myositis; brown staining indicates
expressionofmicrosomalprostaglandinEsynthase-1.
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dermatomyositis, suggesting a role of 5-LO in the
pathogenesisof thesediseases [73].

The transcription factor NFjB in muscle repair

When highlighting molecules that share their effects
between the immune system andmuscle fibre regen-
eration andmuscle remodelling, thewell-established
transcription factor NFjB is of particular interest.
NFjB is critical in immune reactions but also has a
role in myogenesis, muscle regeneration andmuscle
atrophy. Several of the cytokines discussedabove act
through NFjB. This transcription factor is ubiqui-
tously expressed, and its signalling pathway regu-
lates cellular functions such as proliferation, differ-
entiation, survival, apoptosis and the immune
response [74]. NFjB is composed of different subun-
its responsible for the so-called classical or alterna-
tive NFjB signalling pathways [75]. It has been re-
ported that activation of NFjB family members is
associated with regulating myogenesis and muscle
regeneration, and this involvement may be subunit
specificandoccursviaboth theclassical andalterna-
tivepathways. Indegenerativemusclediseases,mus-
cle fibres undergo a programme of regeneration
which is the same as after muscle injury, and the
NFjB pathway has been found to modulate this
regenerative process [76]. The effects ofNFjBseem to
be a balance between those of the classical and alter-
native pathways. The classical signalling maintains
myoblasts in the proliferative stage, preventing their
premature differentiation, and once myogenic differ-
entiation is initiated, this pathway is shut down. The
alternative pathway is then activated, promoting
mitochondrial biogenesis, possibly to provide the
forming myotubes with the required energy (Fig. 2
[77]. Myogenic differentiation can be inhibited by
NFjB throughstimulation of cyclinD1accumulation
and cell cycle progression [78]. Another mechanism
through which NFjB could inhibit myogenesis is
thought tobe through the increasedexpressionof the
transcription factor Yin Yang1 which directly re-
presses the synthesis of the differentiation genes a-
actin, muscle creatine kinase and myosin heavy
chain IIb [79].

Nuclear factor kappa B regulates the expression of
proinflammatory cytokines, including IL-1b, IL-6, IL-
15 and TNF, in systemic inflammatory disorders
such as Duchenne muscular dystrophy, IIMs and
rheumatoid arthritis [80, 81]. These cytokines are
also potent activators of NFjB, creating a positive
feedback loop [82]. IL-1b andTNFmaybothblock the
differentiation of cultured myoblasts into myotubes

through the activation of NFjB [83]. Another mecha-
nism ofmyogenic inhibition is through the reduction
of cellular levels of MyoD protein by post-transcrip-
tional modification. On NFjB activation, proinflam-
matory cytokines can destabilize MyoD mRNA in
skeletal muscle cells and thereby inhibit the transi-
tion fromproliferationtodifferentiation [84].

In inflammatorymyopathies, NFjBactivation occurs
both in infiltrating inflammatory cells and in muscle
fibres within themuscle tissue. Patients with inflam-
matory myopathies have an overexpression of MHC
class I in muscle cells which is thought to induce ER
stress,which in turn canactivateNFjB.Uponactiva-
tion,NFjBregulates theexpressionofgenes inducing
MHC class I causing a positive feedback for the pro-
gressionof inflammatorymyopathies [12,23].

Nuclear factor kappa B cells can also induce expres-
sion of proteins of the ubiquitin–proteasome system
involved in skeletal muscle protein degradation, and
this partly works through increased expression of
muscle RING finger protein 1 (MuRF1). Increased
expression of MuRF1 has been reported in animal
modelsofmuscleatrophyinducedbyimmobilization,
IL-1andglucocorticoids [20].

Targeting NFjB for pharmacological therapy is an
attractive option for chronic inflammatory diseases
such as IIM. The NFjB pharmacological models
available today involve curcumin [85], NBD peptide
(NBD = NEMO binding domain where NEMO is in-
cluded in aNFjB subunit essential for classic signal-
ling) [86, 87] and L-arginine [88], [89] which protect
themuscleandstimulatemuscle regeneration.Asys-
temic administration of NBDpeptide would probably
affect the homeostatic functions of NFjB in immune
system. Targeting NFjB in immune cells directly as
well as the muscle cells might give a more specific
effect. Another approach would be to target muscle
wasting-related alternatives downstream of NFjB,
e.g. MuRF1, in order to inhibit muscle protein break-
down.

Muscle weakness: an acquired metabolic myopathy

The main clinical symptom experienced by patients
with polymyositis and dermatomyositis is impaired
endurance. Muscle endurance is dependent on oxi-
dative type I fibres and requires an oxygen supply.
Loss of capillaries in muscle tissue is a hallmark of
dermatomyositis. A reduced number of capillaries
compared with the number in healthy individuals
has been demonstrated in both the early and late
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phases of polymyositis without detectable inflam-
matory infiltrates suggesting an impaired micro-
circulation in muscle in both polymyositis and
dermatomyositis [10, 11]. Notably, several of the
cytokines reported to have aberrant expression in
muscle tissue can be induced by hypoxia, including
TNF, IL-1 and the alarmin HMGB1. Further support
for the role of hypoxia in skeletal muscle weakness
is the low levels of adenosine triphosphate and
phosphocreatine recorded by magnetic resonance
spectroscopy [90], as well as a decreased proportion
of oxidative, type I muscle fibres in patients with
established polymyositis or dermatomyositis and
persistent reduced muscle performance [91]. These
observations all support the notion of an acquired
metabolicmyopathycausingmuscle fatigue.

Nonimmune mechanisms

MHC class I upregulation

An obvious finding in muscle biopsies from patients
with inflammatorymyopathies isMHCclass I expres-
sioninmusclefibres,which isnotobserved inhealthy
individuals. Thismay be the only sign of pathology in
muscle tissue and may be present without adjacent
inflammatory cell infiltrates. MHC class I can be in-
duced by proinflammatory cytokines (e.g. IFNs, IL-1
andHMGB1) that have been detected inmyositis tis-
sue (Fig. 2). It is interesting that genetically modified
micewithmuscle-specificupregulationofMHCclass I
developed muscle weakness before inflammatory
infiltrates could be detected in muscle tissue, sup-
porting the notion that this phenotypic modification
ofmuscle fibres couldaffectmuscle contractility [92].
MHC class I expression could also be induced and
sustained by the ER stress response (Fig. 2). This is a
protective mechanism in cells subjected to stress.
Signs of ER stress have been observed in muscle tis-
sue from both MHC class I transgenic mice and from
patientswithmyositis [12].

Major histocompatibility complex class I molecules
are localized in the ER and could thereby affect pro-
tein synthesis of muscle fibres andmuscle fibre con-
tractility. In single fibres fromMHCclass I transgenic
mice, force production was reduced in slow twitch
type I fibresowing toanasyetundetermined intrinsic
effect [93]. A differential effect on fibre types resem-
bles theclinicaleffect inmyositis, aspatientsmoreof-
ten complain of reduced muscle endurance, which
mainly depends on oxidative type I muscle fibres,
rather than impaired single high-force movements
[94]. These data support the hypothesis that MHC

class I expression in muscle fibres could affect mus-
cle performance, even in the absence of muscle fibre
necrosis or inflammatory cell infiltrates, and contrib-
ute tochronicmuscle fatigue inmyositis.

Skeletal muscle regeneration

Another possible cause of the chronic persistent
muscle weakness observed in the three types ofmyo-
sitis could be a defective repair mechanism after the
loss of muscle fibres. The regeneration of skeletal
muscle depends on the balance between pro- and
anti-inflammatory factors that determine whether
the damage will be repaired with muscle fibre
replacement and functional contractility or with scar
tissue formation [95]. Muscle tissue has an inborn
repair mechanism whereby muscle fibres can regen-
erate from satellite cells. Skeletal muscle regenera-
tion includes three distinct stages, degeneration,
muscle repair and remodelling, and follows a fairly
consistent pattern irrespective of the underlying
cause of injury (e.g. direct trauma, tissue ischaemia,
old age or genetic defects) [96, 97]. If the muscle re-
pair mechanisms are inadequate, the consequence
might be reduced muscle function andmuscle wast-
ing [97]. Adult skeletal muscle is a stable tissue with
limited nuclear turnover [98], but it has the ability to
rapidly regenerate in response to damage to main-
tain well-innervated, vascularized and contractile
muscle. The well-orchestrated course of satellite cell
activation and differentiation is largely similar to the
gene expression during embryonic development of
muscle while the main difference is the presence of
immunecells duringmuscle regeneration inmyositis
patients [99]. Signs of fibre degeneration and regen-
eration are classical histopathological features of
myositis, but to what extent, the inflammatory re-
sponse inmyositis is a feature that promotes muscle
injury or muscle growth, and repair is still inade-
quatelyunderstood.

The initial event in thedegenerationofmuscle, necro-
sis of muscle fibres, is triggered by disruption of the
sarcolemma followed by increased serum levels of
proteins such as creatine kinase andmyoglobin [76].
In the early phase of muscle damage, the injured
muscle activates an inflammatory response driven
by T helper (Th)1 cytokines, such as IFNc and TNF.
Neutrophils are rapid responders within the first
hours, followed by CD68-expressing M1 phenotype
macrophages during the first 24 h. These two cell
types contribute to further muscle membrane lysis
by production of free radicals but also clear the cellu-
lar debris by phagocytic removal [100]. Whether this
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elimination of debris is of importance for further
regeneration isnot fullyunderstood.

After the proinflammatory phase, quiescent Pax7-
expressing muscle satellite cells are exposed to sig-
nals such as IGF-1, fibroblast growth factor 2, and
hepatocyte growth factor promoting activation, pro-
liferation and migration to the site of injury (Fig. 1)
[101]. During this stage, the cells becomeMyoD- and
Myf5-expressing myoblasts. Throughout the shift
from the proliferative stage to the differentiation
phase, theM1macrophages are replaced by CD163+

M2macrophages,activatedbyTh2cytokinessuchas
IL-4, IL-10and IL-13. TheM2macrophages display a
more anti-inflammatory phenotype and are found
during the healing phase of acute inflammation, in
wound-healing tissue and in chronic inflammation,
but are rarely observed in myositis [100]. Following
the proliferation stage, expression of myogenin and
myogenic regulatory factor 4 is upregulated, and the
myoblasts become terminally differentiated and exit
the cell cycle. Thesemuscleprogenitor cells then fuse
togetherorwith theexistingfibres to replace thedam-
agedmuscle cells [76]. At present, it is not possible to
distinguish the features of the chronic inflammatory
response in autoimmune myositis that cause injury
from those that promotemuscle regeneration and re-
pair.

Effect of anti-inflammatory agents on muscle regeneration

Glucocorticoids in high doses still form the basis for
treatment of polymyositis and dermatomyositis
although catabolic effects and steroid-induced mus-
cle atrophy arewell-known side effects. The degree of
these side effects in polymyositis and dermatomyosi-
tis isuncertain, as thefibreatrophyhas recentlybeen
questioned [102–104]. Glucocorticoid-induced atro-
phy is characterized by a decrease in muscle fibre
cross-sectional area in fast twitch, type II muscle fi-
bres with an accompanied decrease in muscle
strength [105].Theactionsofglucocorticoidsonskel-
etal muscle include both an inhibitory effect on pro-
teinsynthesisandastimulatory effectonmusclepro-
teolysis. The anti-anabolic outcome is a consequence
of both the inhibition of amino acid transport into the
muscle [106] and the inhibition of IGF-1, a growth
factor that increases myogenesis but also decreases
proteolysis and apoptosis [107]. Glucocorticoids also
activatedifferentsystemsresponsible forproteindeg-
radation (ubiquitin–proteasome system, cathepsins
and calpains) and stimulate muscle production of
myostatin, a growth factor that downregulates satel-
lite cell proliferation anddifferentiation [108].Muscle

wasting is illustrated by decreased levels of the tran-
scription factor formuscle differentiation,MyoD, and
it appears that glucocorticoids can stimulate the deg-
radationofMyoD,at least in thenucleus.The levelsof
another myogenic transcription factor, myogenin,
also seem to be reduced in response to dexametha-
sone administration in murine C2C12 muscle cells
[109]. Glucocorticoids also have an effect on the
COX-dependent PG synthetic pathway, downregu-
lating cytosolic phospholipase A2, and therefore
might impair the role of PGE2 inmuscle regeneration
[110, 111]. Thus, glucocorticoids may act as a dou-
ble-edged sword in the recovery of strength inmyosi-
tispatientsbyreducing inflammationbutat thesame
time inhibiting muscle regeneration. This supports
the need for more targeted therapies in these condi-
tions.

Nonsteroidal anti-inflammatory drugs (NSAIDS) are
popular over the counter medications for treating
muscle injury. They mainly inhibit COX enzymes in
the PG biosynthetic pathway [112]. It has been
shown that NSAIDs attenuate the exercise-induced
increase in satellite cell number, supporting a role
for PGs in muscle regeneration [113]. Furthermore,
selective COX-2 inhibition results in decreased
proliferation of satellite cells, whereas nonselective
COX inhibition may decrease satellite cell differenti-
ation and fusion [114]. Not only can COX inhibitors
affect the satellite cell response to exercise, it ap-
pears that the COX-2 pathway regulates muscle
protein synthesis and growth via several mecha-
nisms that can be attenuated by COX-2 inhibition
[115]. Traditional NSAIDs such as aspirin and ibu-
profen are able to reduce the effects of PGs on skele-
tal muscle regeneration.

Effects of exercise in inflammatory myopathies

Persistent muscle weakness and reduced muscle
endurance could also be a consequence of a low level
of physical activity, as, until recently, myositis pa-
tients were advised to refrain from exercise owing to
fear of worsening muscle inflammation. However,
several studies have demonstrated that physical
exercise, in combination with pharmacotherapy, is
safe and improvesmuscle strengthandperformance,
oxygen capacity and quality of life [91, 116–120]. It is
interesting thatphysical exercisewasfoundto induce
ashift infibre typecomposition towardsanormaldis-
tribution, suggesting that exercise might have nor-
malized oxygen tensionwithin themuscle tissue [91].
Furthermore, exercise with creatine supplementa-
tion led toahigher functional performance compared
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with exercise alone [121]. Of note, 7 weeks of resis-
tance exercise induced downregulation of genes that
regulate inflammation in muscle tissue suggesting
that exercise might reduce inflammation [122]. An
anti-inflammatory effect of training has also been
seen inhealthy individualsmeasuredas lower serum
levelsof IL-6andC-reactiveprotein [123].

Anti-inflammatory properties of physical exercise
could arise from the muscle cells themselves via
secretion of contraction-induced ‘myokines’, and, as
mentioned above, both IL-6 and IL-15 appear to
have beneficial roles when released from muscle fi-
bres. IL-6 is the first cytokine to be released into the
circulation upon initiation of exercise followed by a
rise in circulating levels of IL-1ra, IL-10 and soluble
tumour necrosis factor-receptor (sTNF-R), resulting
in an anti-inflammatory environment [124]. The
anti-inflammatory properties of exercise-induced
IL-6 seem to have mainly systemic metabolic effects.
Lower levels of TNF have been demonstrated in
muscle tissue after physical exercise in patients
with chronic heart failure [125] and exercise
resulted in decreased levels of TNF and increased
IL-10 within skeletal muscle with a fibre type spe-
cific pattern in rats [126]. Exercise and muscle con-
tractions might stimulate NFjB activation through
several pathways. The functions of exercise-stimu-
lated NFjB are currently unknown, but it is possible
that NFjBmay counteract oxidative stress, induce a
brief proinflammatory response critical for muscle
regeneration and lead to changes in postexercise
muscle glucose transport, glycogen repletion and
lipid oxidation [127].

Inresponse tomuscleoverload,satellite cells areacti-
vated and progress either to contribute to myotube
fusion or to the pool of self-renewing satellite cells.
Upon physical exercise, the release of inflammatory
substances and ⁄or growth factors signal to the satel-
lite cells thus regulating their activation and prolifer-
ation. Aerobic exercise can induce satellite cell prolif-
eration, and exercise-induced hypoxia may trigger
systemic stem cell mobilization, which inmuscle tis-
suewould be the satellite cell, that could be recruited
in muscle regeneration. Aerobic exercise may also
stimulate vascular endothelial growth factor secre-
tion contributing to satellite cell proliferation and
migration. Whether these mechanisms are applica-
ble to myositis patients still needs to be determined.
Exercise has the potential to counteract the catabolic
effect of glucocorticoids on muscles, and this pro-
vides further support for prescribing exercise as part
of treatment formyositispatients.

Conclusions

The interplay between the immune system andmus-
cle is complex and involves several mechanisms that
may contribute tomuscle weakness and that need to
be taken into consideration when treating patients
with myositis. Different mechanisms may predomi-
nate in different phases of disease (e.g. in early or
established disease), and careful phenotyping of pa-
tients is essential in future studies. Several of the
cytokines, alarmins and eicosanoids that predomi-
nate in muscle tissue may act both as catabolic and
anabolic factors. The dual effect of these molecules –
proinflammatory and anabolic ⁄catabolic – may also
be relevant for other chronic inflammatory diseases
andshouldbethe focusof future research.
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